Respuesta :

Hello!

The answer is: [tex]g(x)=-\sqrt[3]{x-1}[/tex]

Why?

Let's check the roots and the shown point in the graphic (2,-1)

First,

[tex]0=-\sqrt[3]{x-1}\\\\0^{3}=(-\sqrt[3]{x-1})^{3}\\\\0=-(x-1)\\\\x=1[/tex]

then,

[tex]g(0)=-\sqrt[3]{0-1}\\g(0)=-(-1)\\g(0)=1\\y=1[/tex]

So,  we know that the function intercepts the axis at (1,0) and (0,1), meaning that the function match with the last given option

([tex]g(x)=-\sqrt[3]{x-1}[/tex])

Second,

Evaluating the function at (2,-1)

[tex]y=-\sqrt[3]{x-1}\\-1=-\sqrt[3]{2-1}\\-1=-\sqrt[3]{1}\\-1=-(1)\\-1=-1[/tex]

-1=-1

It means that the function passes through the given point.

Hence,

The equation which represents g(x) is [tex]g(x)=-\sqrt[3]{x-1}[/tex]

Have a nice day!