Which is a rational function??

Answer:
A. [tex]y=\frac{x-5}{2}[/tex]
B. [tex]y=\frac{2}{x}[/tex]
and
D. [tex]y=x^2-x+4[/tex]
Step-by-step explanation:
A rational function is of the form [tex]R(x)=\frac{P(x)}{Q(x)} ,Q(x)\ne0[/tex] where
[tex]P(x)[/tex] and [tex]Q(x)[/tex] are polynomial functions.
Based on this definition, every polynomial function is a rational function.
Hence the rational functions in the options provided are;
A. [tex]y=\frac{x-5}{2}[/tex]
B. [tex]y=\frac{2}{x}[/tex]
and
D. [tex]y=x^2-x+4[/tex]
[tex]y=\frac{x-3^x}{x^2}[/tex] is not a rational function because the numerator is not a polynomial function.