Gabilop
contestada

Which describes the number and type of roots of the equation x^4 - 64 = 0

a. 2 real roots, 2 imaginary roots
b. 4 real roots
c. 3 real roots, 1 imaginary root
d. 4 imaginary roots

Respuesta :

ANSWER

a. 2 real roots, 2 imaginary roots

EXPLANATION

The given equation is

[tex] {x}^{4} - 64 = 0[/tex]

We rewrite as difference of two squares,

[tex]( {x}^{2} )^{2} - {8}^{2} = 0[/tex]

We factor using difference of two squares to get;

[tex]( {x}^{2} - 8)( {x}^{2} + 8) = 0[/tex]

We now use the zero product property to get:

[tex]{x}^{2} = 8 \: or \: {x}^{2} = - 8[/tex]

Take the square root of both sides to get;

[tex]{x} = \pm \sqrt{8} \: or \: {x}^{2} = \pm \sqrt{ - 8} [/tex]

[tex]{x} = \pm 2\sqrt{2} \: or \: {x} = \pm 2\sqrt{ 2} i[/tex]

[tex]{x} = - 2\sqrt{2} \: or \: {x} = 2\sqrt{ 2}[/tex]

are two real roots.

[tex]{x} = - 2\sqrt{2}i \: or \: {x} = 2\sqrt{ 2} i[/tex]

are two imaginary roots.

The correct answer is A.