Respuesta :
Answer:
The volume of cube = x³ -6x²y + 12xy² - 8y³
Step-by-step explanation:
It is given that,
Side length of cube s = (x - 2y)
Volume of cube = s³
Points to remember
(a - b)³ = a³ - 3a²b + 3ab² - b³
To find the volume of cube
s = (x - 2y)
Volume V = s³ = (x - 2y)³
(x - 2y)³ = x³ - (3 * x² * 2y) + (3 * x * (2y)²) - (2y)³
= x³ -6x²y + 12xy² - 8y³
Therefore the volume of cube = x³ -6x²y + 12xy² - 8y³
Answer:
[tex]x^3 -6x^2y + 12xy^2 - 8y^3[/tex]
Step-by-step explanation:
We are given that the side length (s) of a cube is [tex]x-2y[/tex]. Given that [tex]V=s^3[/tex], we are to find the volume of the cube.
[tex]Volume = (x-2y)^3[/tex]
We know that, [tex](a - b)^3 = a^3 - 3a^2b + 3ab^2 - b^3[/tex]
So expanding the given expression accordingly:
[tex](x-2y)^3 = x^3 - (3 \times x^2 \times 2y) + (3 \times x \times (2y)^2) - (2y)^3[/tex]
Volume of cube = [tex]x^3 -6x^2y + 12xy^2 - 8y^3[/tex]