Respuesta :

Answer:

The volume of cube =  x³ -6x²y + 12xy² - 8y³

Step-by-step explanation:

It is given that,

Side length of cube s = (x - 2y)

Volume of cube = s³

Points to remember

(a - b)³ = a³ - 3a²b + 3ab² - b³

To find the volume of cube

s = (x - 2y)

Volume V = s³ = (x - 2y)³

(x - 2y)³ = x³ - (3 * x² * 2y) + (3 * x * (2y)²) - (2y)³

  = x³ -6x²y + 12xy² - 8y³

Therefore the volume of cube =  x³ -6x²y + 12xy² - 8y³

Answer:

[tex]x^3 -6x^2y + 12xy^2 - 8y^3[/tex]

Step-by-step explanation:

We are given that the side length (s) of a cube is [tex]x-2y[/tex]. Given that [tex]V=s^3[/tex], we are to find the volume of the cube.

[tex]Volume =  (x-2y)^3[/tex]

We know that, [tex](a - b)^3 = a^3 - 3a^2b + 3ab^2 - b^3[/tex]

So expanding the given expression accordingly:

[tex](x-2y)^3 = x^3 - (3 \times x^2 \times 2y) + (3 \times x \times (2y)^2) - (2y)^3[/tex]

Volume of cube = [tex]x^3 -6x^2y + 12xy^2 - 8y^3[/tex]