Respuesta :

[tex]81(\cos160^\circ+i\sin160^\circ)=81e^{160^\circ i}[/tex]

By DeMoivre's theorem,

[tex]\left(81e^{160^\circ i}\right)^{1/4}=81^{1/4}e^{(160+360k)^\circ i/4}[/tex]

where [tex]k=0,1,2,3[/tex]. [tex]81=3^4\implies81^{1/4}=3[/tex], so the 4th roots are

[tex]k=0:\quad3e^{40^\circ i}=3(\cos40^\circ+i\sin40^\circ)[/tex]

[tex]k=1:\quad3e^{130^\circ i}=3(\cos130^\circ+i\sin130^\circ)[/tex]

[tex]k=2:\quad3e^{220^\circ i}=3(\cos220^\circ+i\sin220^\circ)[/tex]

[tex]k=3:\quad3e^{310^\circ i}=3(\cos310^\circ+i\sin310^\circ)[/tex]