Respuesta :

Answer:

The solution is [tex]x=6\ cm[/tex]

Step-by-step explanation:

we know that

The area of rectangle is equal to

[tex]A=LW[/tex]

we have

[tex]A=56\ cm^{2}[/tex]

so

[tex]56=LW[/tex] ------> equation A

[tex]L=x+2[/tex] -----> equation B

[tex]W=2x-5[/tex] -----> equation C

Substitute equation B and equation C in equation A

[tex]56=(x+2)(2x-5)[/tex]

solve for x

[tex]56=(x+2)(2x-5)\\56=2x^{2}-5x+4x-10\\2x^{2}-x-66=0[/tex]

The formula to solve a quadratic equation of the form [tex]ax^{2} +bx+c=0[/tex] is equal to

[tex]x=\frac{-b(+/-)\sqrt{b^{2}-4ac}} {2a}[/tex]  

in this problem we have

[tex]2x^{2}-x-66=0[/tex]  

so

[tex]a=2\\b=-1\\c=-66[/tex]

substitute in the formula

[tex]x=\frac{1(+/-)\sqrt{-1^{2}-4(2)(-66)}} {2(2)}[/tex]

[tex]x=\frac{1(+/-)\sqrt{529}} {4}[/tex]

[tex]x1=\frac{1(+)23} {4}=6[/tex]

[tex]x2=\frac{1(-)23} {4}=-5.5[/tex]  

The solution is [tex]x=6\ cm[/tex]

[tex]L=6+2=8\ cm[/tex]

[tex]W=2(6)-5=7\ cm[/tex]