a. as a moving sound source approaches a stationary observer, the frequency of the sound increases, therefore the wavelength is shorter
Explanation:
This effect is known as Doppler effect. When a moving sound source approaches a stationary observer, the wavefronts of the wave appear to be closer to each other: as a result, the frequency of the sound wave appears to be increased. The wavelength of the sound is inversely proportional to the frequency:
[tex]\lambda=\frac{v}{f}[/tex]
where v is the speed of the wave and f the frequency: therefore, as the frequency increases, the wavelength gets shorter.
b. As the sound source moves away from the observer, the pitch of the sound decreases and the wavelength increases
Explanation:
When the sound source moves away from the observer, the effect is opposite: the wavefronts appear to spread apart from each other, so the frequency of the sound appears to decreases, and as a result, the wavelength increases.
The pitch of a sound is related to how we perceive the sound, and it is directly proportional to the frequency: therefore, since the frequency decreases, the pitch decreases as well.