Respuesta :

Answer:

Part 1) [tex]a^{b+2}=(x)(a^{2})[/tex]

Part 2) [tex]2a^{3b}+a^{2b}+a^{b}=2x^{3}+x^{2}+x[/tex]

Step-by-step explanation:

Part 1) Given that [tex]a^{b}=x[/tex] evaluate the following

[tex]a^{b+2}[/tex]

we know that

[tex]a^{b+2}=(a^{b})(a^{2})[/tex]

Remember that when multiplying two powers that have the same base, you can add the exponents

[tex]a^{b}=x[/tex]

so

substitute

[tex]a^{b+2}=(x)(a^{2})[/tex]

Part 2) Given that [tex]a^{b}=x[/tex] evaluate the following

[tex]2a^{3b}+a^{2b}+a^{b}[/tex]

we know that

[tex]2a^{3b}+a^{2b}+a^{b}=2(a^{b})^{3}+(a^{b})^{2}+a^{b}[/tex]

Remember that

[tex]a^{b}=x[/tex]

so

substitute

[tex]2a^{3b}+a^{2b}+a^{b}=2x^{3}+x^{2}+x[/tex]