Answer:
The volume of one shaped-cube block is [tex]\frac{1}{8}\ ft^{3}[/tex]
Step-by-step explanation:
we know that
The volume of a cube is equal to
[tex]V=b^{3}[/tex]
where
b is the length side of the cube
step 1
Find the length side of one shaped-cube block
Let
x------> the length side of one shaped-cube block
y-----> the length side of the storage container
[tex]x=y/5[/tex] -----> equation A
we have
[tex]y=2\frac{1}{2}\ ft=\frac{2*2+1}{2}=\frac{5}{2}\ ft[/tex] ---> convert to an improper fraction
substitute in the equation A
[tex]x=(5/2)/5=1/2\ ft[/tex]
step 2
Find the volume of one shaped-cube block
[tex]V=(1/2)^{3}[/tex]
[tex]V=\frac{1}{8}\ ft^{3}[/tex]