in the circle below, f is the center, gi is the diameter and m

Answer:
Part a) [tex]m<HIG=40\°[/tex]
Part b) IHG is a semicircle and GJI is a semicircle
Part c) HIJ is a major arc and HIJG is a major arc
Part d) [tex]arc\ GH=80\°[/tex]
Part e) [tex]arc\ GJI=180\°[/tex]
Step-by-step explanation:
Part a) Give an inscribed angle
we know that
The inscribed angle measures half that of the arc comprising
so
in this problem m<HIG is an inscribed angle
[tex]m<HIG=\frac{1}{2}(arc\ HG)[/tex]
[tex]arc\ HG=80\°[/tex] ----> by central angle
substitute
[tex]m<HIG=\frac{1}{2}(80\°)=40\°[/tex]
Part b) Give a semicircle
we know that
The diameter divide the circle into two semicircles
so
GI is a diameter
therefore
IHG is a semicircle
GJI is a semicircle
Part c) Give a major arc
we know that
The measure of a major arc is greater than 180 degrees
therefore
HIJ is a major arc
HIJG is a major arc
Part d) Measure of arc GH
we know that
[tex]arc\ GH=m<HFG[/tex] ----> by central angle
so
[tex]arc\ GH=80\°[/tex]
Part e) Measure of arc GJI
we know that
[tex]arc\ GJI=180\°[/tex] ----> the arc represent a semicircle