Respuesta :

Answer:

The surface area of the sphere is [tex]108\pi \sqrt[3]{3}\ in^{2}[/tex]

Step-by-step explanation:

In this problem the volume should be [tex]V=324\pi \ in^{3}[/tex] instead of [tex]V=324\ in^{3}[/tex]

step 1

Find the radius of the sphere

The volume of the sphere is equal to

[tex]V=\frac{4}{3}\pi r^{3}[/tex]

we have

[tex]V=324\pi \ in^{3}[/tex]

substitute and solve for r

[tex]324\pi=\frac{4}{3}\pi r^{3}[/tex]

simplify

[tex]r^{3}=324*3/4[/tex]

[tex]r=\sqrt[3]{243}\ in[/tex]

step 2

Find the surface area of the sphere

The surface area of the sphere is equal to

[tex]SA=4\pi r^{2}[/tex]

we have

[tex]r=\sqrt[3]{243}\ in[/tex]

substitute

[tex]SA=4\pi(\sqrt[3]{243})^{2}[/tex]

simplify

Remember that

[tex](\sqrt[3]{243})^{2}=243^{(2/3)} =27\sqrt[3]{3}[/tex]

[tex]SA=4\pi(27\sqrt[3]{3})=108\pi \sqrt[3]{3}\ in^{2}[/tex]