Respuesta :

Answer:

[tex]-7.3[/tex]

Step-by-step explanation:

We want to evaluate the line integral:

[tex]\int\limits^{(4,6)}_{(0,3)} {x\sin y} \, ds[/tex]

where [tex]ds=\sqrt{(\frac{dx}{dt})^2+(\frac{dy}{dt})^2 }dt[/tex]

The parametric equation of the straight line joining (0,3) and (4,6) is

[tex]x=4t[/tex] and [tex]y=3t+3[/tex]

This implies that;

[tex]ds=\sqrt{(4)^2+(3)^2 }dt[/tex]

[tex]ds=\sqrt{25}dt[/tex]

[tex]ds=5dt[/tex]

Our line integral then becomes;

[tex]\int\limits^{1}_{0} {4t\sin (3t+3)} \, 5dt[/tex]

Using, using integration by parts, we obtain;

[tex]20\int\limits^{1}_{0} {t\sin (3t+3)} \, dt=-7.3[/tex] to the nearest tenth.

The solution to the line integral for the equation [tex]\mathbf{\int ^{(4,6)}_{(0,3)} \ x \ sin y \ ds}[/tex] where c is the line segment from (0,3) to (4,6) is -7.3

What is line integral?

A line integral is a type of integral in mathematics in which the variable function to be integrated is measured across a curve.


From the given information, we are to evaluate the line integral:

[tex]\mathbf{\int ^{(4,6)}_{(0,3)} \ x \ sin y \ ds}[/tex]

where;

[tex]\mathbf{ds = \sqrt{(\dfrac{dx}{dt})^2 + (\dfrac{dy}{dt})^2}}[/tex]

Using the parametric function to determine the straight line joining (0,3) and (4,6), we have:

  • x = 4t
  • y = 3t + 3

Then, we can now have ds to be:

[tex]\mathbf{ds = \sqrt{(\dfrac{4}{1})^2 + (\dfrac{3}{1})^2} \ dt}[/tex]

[tex]\mathbf{ds = \sqrt{(16 + 9} \ dt}[/tex]

[tex]\mathbf{ds = \sqrt{25} \ dt}[/tex]

ds = 5dt

Now, the line integral can be written as:

[tex]\mathbf{=\int^1_0 4t sin (3t + 3) \ 5 dt}[/tex]

By applying integration by parts, we have:

[tex]\mathbf{= 20 \int^1_0 t sin (3t + 3) \ dt}[/tex]

= -7.3

Learn more about line integral here:

https://brainly.com/question/15250071