Answer:
[tex]-253.2 ^{\circ}C[/tex]
Explanation:
First of all, we need to convert the pressure of the gas from torr to Pa. We know that:
1 torr = 133.3 Pa
So, the pressure in Pascals is
[tex]p=(312 torr)(133.3 Pa/torr)=4.16\cdot 10^4 Pa[/tex]
Then we also have:
n = 0.133 number of moles of the gas
[tex]V=525 mL=0.525 L=5.25\cdot 10^{-4} m^3[/tex] volume of the gas
The ideal gas equation states that
[tex]pV=nRT[/tex]
where R is the gas constant and T the absolute temperature. Solving the equation for T, we find
[tex]T=\frac{pV}{nR}=\frac{(4.16\cdot 10^4 Pa)(5.25\cdot 10^{-4} m^3)}{(0.133 mol)(8.314 J/mol K)}=19.8 K[/tex]
In Celsius, it becomes
[tex]T=19.8 K-273=-253.2 ^{\circ}C[/tex]