Answer:
The lateral area is [tex]298.7\ units^{2}[/tex]
Step-by-step explanation:
we know that
The lateral area of the regular octagonal pyramid is equal to the area of its eight triangular lateral faces
The lateral area is equal to
[tex]LA=8[\frac{1}{2}(b)(l)][/tex]
we have
[tex]b=6.6\ cm[/tex]
To find the slant height apply the Pythagoras Theorem
[tex]l^{2}=8^{2} +8^{2}\\l^{2}=128\\l=\sqrt{128}\ units[/tex]
Find the lateral area
substitute the values
[tex]LA=8[\frac{1}{2}(6.6)(\sqrt{128})]=298.7\ units^{2}[/tex]