Respuesta :

Answer:

The lateral area is [tex]298.7\ units^{2}[/tex]

Step-by-step explanation:

we know that

The lateral area of the regular octagonal pyramid is equal to the area of its eight triangular lateral faces

The lateral area is equal to

[tex]LA=8[\frac{1}{2}(b)(l)][/tex]

we have

[tex]b=6.6\ cm[/tex]

To find the slant height apply the Pythagoras Theorem

[tex]l^{2}=8^{2} +8^{2}\\l^{2}=128\\l=\sqrt{128}\ units[/tex]

Find the lateral area

substitute the values

[tex]LA=8[\frac{1}{2}(6.6)(\sqrt{128})]=298.7\ units^{2}[/tex]

LilNil

The answer is 298.7 cm²