Respuesta :
Multiplying eqn no. two with 4 we add it up with eqn 1.
[tex]4x - 5y = 10 \\ - 4x - 12y = 32 \\ [/tex]
[tex] - 17y = 42 \\ y = \frac{ - 42}{17} [/tex]
When
[tex] - x - 8 = 3y \\ x + 3y = - 8[/tex]
[tex]x = - 8 - 3 \frac{ - 42}{17 } \\ x = - 8 + \frac{42}{17} \\ x = \frac{ - 10}{17} [/tex]
So, x = - 10/17 and y = - 42/17.
Answer:
the value of x= -10/17 and y= -42/17
Step-by-step explanation:
[tex]4x-5y=10[/tex]
[tex]-x-8=3y[/tex]
Use substitution method, solve the second equation for x
[tex]-x-8=3y[/tex]
Add 8 on both sides
[tex]-x=8+3y[/tex], divide both sides by -1
[tex]x=-8-3y[/tex], now plug it in first equation
[tex]4(-8-3y)-5y=10[/tex]
[tex]-32-12y-5y=10[/tex],combine like terms
[tex]-32-17y=10[/tex]
Add 32 on both sides
[tex]-17y= 42[/tex]
Divide by -17 on both sides
[tex]y=\frac{-42}{17}[/tex]
Now plug in y in x =-8-3y and find out y
[tex]x=-8-3(\frac{-42}{17})=-8+\frac{126}{17} =-\frac{10}{17}[/tex]
the value of x= -10/17 and y= -42/17