1212094
contestada

Type the correct answer in each box. Use numerals instead of words. If necessary, use / for the fraction bar(s).
Solve the given system of equations.

4x-5y=10
-x-8=3y

Respuesta :

Multiplying eqn no. two with 4 we add it up with eqn 1.

[tex]4x - 5y = 10 \\ - 4x - 12y = 32 \\ [/tex]

[tex] - 17y = 42 \\ y = \frac{ - 42}{17} [/tex]

When

[tex] - x - 8 = 3y \\ x + 3y = - 8[/tex]

[tex]x = - 8 - 3 \frac{ - 42}{17 } \\ x = - 8 + \frac{42}{17} \\ x = \frac{ - 10}{17} [/tex]

So, x = - 10/17 and y = - 42/17.

Answer:

the value of x= -10/17 and y= -42/17

Step-by-step explanation:

[tex]4x-5y=10[/tex]

[tex]-x-8=3y[/tex]

Use substitution method, solve the second equation for x

[tex]-x-8=3y[/tex]

Add 8 on both sides

[tex]-x=8+3y[/tex], divide both sides by -1

[tex]x=-8-3y[/tex], now plug it in first equation

[tex]4(-8-3y)-5y=10[/tex]

[tex]-32-12y-5y=10[/tex],combine like terms

[tex]-32-17y=10[/tex]

Add 32 on both sides

[tex]-17y= 42[/tex]

Divide by -17 on both sides

[tex]y=\frac{-42}{17}[/tex]

Now plug in y in x =-8-3y and find out y

[tex]x=-8-3(\frac{-42}{17})=-8+\frac{126}{17} =-\frac{10}{17}[/tex]

the value of x= -10/17 and y= -42/17