Respuesta :

Answer:

The area of the kite is [tex]42\ units^{2}[/tex]

Step-by-step explanation:

we know that

The area of a kite is half the product of the diagonals

so

[tex]A=\frac{1}{2}(D1*D2)[/tex]

we have

[tex]D1=2*(3)=6\ units[/tex]

Find the length side of diagonal D2

Applying the Pythagoras Theorem

[tex]D2=\sqrt{5^{2}-3^{2}} +10\\ \\D2=4+10\\ \\D2=14\ units[/tex]

Find the area of the kite

we have

[tex]D1=6\ units[/tex]

[tex]D2=14\ units[/tex]

substitute

[tex]A=\frac{1}{2}(D1*D2)[/tex]

[tex]A=\frac{1}{2}(6*14)=42\ units^{2}[/tex]