Respuesta :

1. The interior angles of any triangle add to 180 degrees in measure. So

[tex]m\angle A=(180-85-47)^\circ=48^\circ[/tex]

Then by the law of sines,

[tex]\dfrac{\sin48^\circ}{19}=\dfrac{\sin85^\circ}b=\dfrac{\sin47^\circ}c\implies b\approx25.5,c\approx18.7[/tex]

2. By the law of sines,

[tex]\dfrac{\sin\angle A}a=\dfrac{\sin\angle B}{16}=\dfrac{\sin104^\circ}{25}[/tex]

so that

[tex]\sin\angle B=\dfrac{16\sin104^\circ}{25}\implies m\angle B\approx38.4^\circ[/tex]

Then

[tex]m\angle A\approx(180-104-38.4)^\circ=37.6^\circ[/tex]

so that

[tex]\dfrac{\sin\angle A}a=\dfrac{\sin104^\circ}{25}\implies a=\dfrac{25\sin\angle A}{\sin104^\circ}\approx15.7[/tex]