Respuesta :

Answer:

The solution in the attached figure

[tex]sin(A)=\frac{12}{13}[/tex]

[tex]sin(B)=\frac{5}{13}[/tex]

[tex]cos(A)=\frac{5}{13}[/tex]

[tex]cos(B)=\frac{12}{13}[/tex]

[tex]sin(A)=cos(B)[/tex]

[tex]sin(B)=cos(A)[/tex]

Step-by-step explanation:

we know that

In the right triangle ABC

sin(A)=cos(B) and cos(A)=sin(B)

because

[tex]A+B=90\°[/tex] -------> by complementary angles

step 1

Find sin(A)

The function sine of angle A is equal to divide the opposite side angle A by the hypotenuse

[tex]sin(A)=\frac{BC}{AB}[/tex]

substitute the values

[tex]sin(A)=\frac{12}{13}[/tex]

step 2

Find sin(B)

The function sine of angle B is equal to divide the opposite side angle B by the hypotenuse

[tex]sin(B)=\frac{AC}{AB}[/tex]

substitute the values

[tex]sin(B)=\frac{5}{13}[/tex]

step 3

Find cos(A)

The function cosine of angle A is equal to divide the adjacent side angle A by the hypotenuse

[tex]cos(A)=\frac{AC}{AB}[/tex]

substitute the values

[tex]cos(A)=\frac{5}{13}[/tex]

[tex]cos(A)=sin(B)[/tex]

step 4

Find cos(B)

The function cosine of angle B is equal to divide the adjacent side angle B by the hypotenuse

[tex]cos(B)=\frac{BC}{AB}[/tex]

substitute the values

[tex]cos(B)=\frac{12}{13}[/tex]

[tex]cos(B)=sin(A)[/tex]

Ver imagen calculista