Respuesta :

B. the answer would be hyperbola

Answer:

Option 2 - Hyperbola

Step-by-step explanation:

Given : The polar equation [tex]r=\frac{1}{4-6\cos\theta}[/tex]

To find : What conic section is represented by the polar equation?

Solution :

To find the conic section first we convert the polar into Cartesian equation    

We know,  [tex]r=\sqrt{x^2+y^2}[/tex] and [tex]x=r\cos\theta[/tex]              

[tex]r=\frac{1}{4-6\cos\theta}[/tex]

[tex]4r-6r\cos\theta=1[/tex]      

Substitute the value of r,

[tex]4(\sqrt{x^2+y^2})-6x=1[/tex]      

[tex]4\sqrt{x^2+y^2}=1+6x[/tex]        

Squaring both side,

[tex]16(x^2+y^2)=(1+6x)^2[/tex]      

[tex]16x^2+16y^2=1+36x^2+12x[/tex]      

[tex]16y^2=20x^2+12x+1[/tex]      

Applying completing the square we get,

[tex]16y^2=20(x+\frac{3}{10})^2-\frac{4}{5}[/tex]

[tex]16y^2-20(x+\frac{3}{10})^2=-\frac{4}{5}[/tex]

[tex]\frac{16y^2}{-\frac{4}{5}}-{20(x+\frac{3}{10})^2}{-\frac{4}{5}}=1[/tex]

[tex]-\frac{y^2}{\frac{1}{4}}+{(x+\frac{3}{10})^2}{\frac{1}{25}}=1[/tex]

[tex]{(x+\frac{3}{10})^2}{\frac{1}{25}}-\frac{y^2}{\frac{1}{4}}=1[/tex]

This is in the form of hyperbola equation i.e. [tex]\frac{x^2}{a^2}-\frac{y^2}{b^2} =1[/tex]

Therefore, The given conic section is a hyperbola.

Hence, Option 2 is correct.