Respuesta :

Answer:

The height of the cone is [tex]6.9\ units[/tex]

Step-by-step explanation:

we know that

The volume of the cone is equal to

[tex]V=\frac{1}{3}Bh[/tex]

where

B is the area of the circular base of the cone

h is the height of the cone

In this problem we have

[tex]V=29\ units^{3}[/tex]

[tex]r=2\ units[/tex]

Find the area of the base B

[tex]B=\pi r^{2}[/tex]

substitute the value of r

[tex]B=\pi (2)^{2}=4 \pi\ units^{2}[/tex]

Find the height of the cone

[tex]29=\frac{1}{3}(4 \pi)h[/tex]

[tex]h=29*3/(4 \pi)[/tex]

assume [tex]\pi=3.14[/tex]

[tex]h=29*3/(4*3.14)=6.9\ units[/tex]

Answer:

6.9

Step-by-step explanation:

did it on khan :)