What is the strength of an electric field that will balance the weight of a 1.0 g plastic sphere that has been charged to −3.0nc?

Respuesta :

Answer:

[tex]3.27\cdot 10^6 V/m[/tex]

Explanation:

In order to balance the weight of the sphere, the electric force must be equal in magnitude to the weight of the sphere:

[tex]F_E = qE=mg[/tex]

where

[tex]q=3.0nC=3.0\cdot 10^{-9} C[/tex] is the charge of the sphere (we can ignore the sign, since we are only interested in the magnitude of the force

E is the strength of the electric field

m = 1.0 g = 0.001 kg is the mass of the sphere

g = 9.81 m/s^2 is the gravitational acceleration

Solving the equation for E, we find the strength of the electric field:

[tex]E=\frac{mg}{q}=\frac{(0.001 kg)(9.81 m/s^2)}{3.0\cdot 10^{-9} C}=3.27\cdot 10^6 V/m[/tex]