1. Answer: a. -7
Step-by-step explanation:
[tex]f(x)=\dfrac{7}{x}\implies f(x)=7x^{-1}\\\\f'(x)=-1\cdot 7x^{-1-1}\\.\qquad =-7x^{-2}\\\\.\qquad =-\dfrac{7}{x^2}\\\\f'(1)=-\dfrac{7}{1^2}\\\\.\qquad =\large\boxed{-7}[/tex]
2. Answer: a. 4
Step-by-step explanation:
[tex]f(x)=4x+7\\f'(x)=1\cdot4x^{1-1}+0\cdot7\\.\qquad=4\\\\f'(5)=\large\boxed{4}[/tex]
3. Answer: d. 224
Step-by-step explanation:
[tex]f(x)=12x^2+8x\\f'(x)=2\cdot12x^{2-1}+1\cdot8x^{1-1}\\.\qquad=24x+8\\\\f'(9)=24(9)+8\\.\qquad=216+8\\.\qquad=\large\boxed{224}[/tex]
4. Answer: d. 11/81
Step-by-step explanation:
[tex]f(x)=\dfrac{-11}{x}\implies f(x)=-11x^{-1}\\\\f'(x)=-1\cdot -11x^{-1-1}\\\\.\qquad=11x^{-2}\\\\.\qquad=\dfrac{11}{x^2}\\\\f'(9)=\dfrac{11}{9^2}\\\\.\qquad=\large\boxed{\dfrac{11}{81}}[/tex]
5. Answer: -10
Step-by-step explanation:
s(t) = 1 - 10t
v = s'(t) = -10
s'(10) = -10