Respuesta :

Answer:

The Second Option is your Answer ( Option 2)

Step-by-step explanation:

1) proof ( replace h with -2)

|-2-2| = 4

|-4| = 4

2) proof ( replace h with 6)

|6-2| = 4

|4|=4

Hopes this helps !

Answer:

[tex]h = -2\\h = 6[/tex]

Step-by-step explanation:

The absolute value is a function that transforms any value x into a positive number.

Therefore, for the function [tex]f(x) = |x|[/tex]  x> 0 for all real numbers.

Then the equation:

[tex]|h-2| = 4[/tex] has two cases

[tex](h-2) = 4[/tex]    if [tex]h > 2[/tex]  (i)

[tex]-(h-2) = 4[/tex]    if [tex]h < 2[/tex] (ii)

We solve the case (i)

[tex]h = 4 + 2\\h = 6[/tex]

We solve the case (ii)

[tex]-h +2 = 4\\h = 2-4\\h = -2[/tex]

Then the solution is:

[tex]h = -2[/tex] or [tex]h = 6[/tex]