The answer is:
The first option, the amount dumped after 5 days is 0.166 tons.
To solve the problem, we need to integrate the given expression and evaluate using the given time.
So, integrating we have:
[tex]\int\limits^5_0 {\frac{\sqrt{t} }{45} } \, dt=\int\limits^5_0 {\frac{1}{45} (t)^{\frac{1}{2} } } \, dt\\\\\int\limits^5_0 {\frac{1}{45} (t)^{\frac{1}{2} } } \ dt=\frac{1}{45}\int\limits^5_0 {t^{\frac{1}{2} } } } \ dt\\\\\frac{1}{45}\int\limits^5_0 {t^{\frac{1}{2} } } } \ dt=(\frac{1}{45}*\frac{t^{\frac{1}{2}+1} }{\frac{1}{2} +1})/t(5)-t(0)\\\\(\frac{1}{45}*\frac{t^{\frac{1}{2}+1} }{\frac{1}{2} +1})/t(5)-t(0)=(\frac{1}{45}*\frac{t^{\frac{3}{2}} }{\frac{3}{2}})/t(5)-t(0)[/tex]
[tex](\frac{1}{45}*\frac{t^{\frac{3}{2}} }{\frac{3}{2}})/t(5)-t(0)=(\frac{1}{45}*\frac{2}{3}*t^{\frac{3}{2} })/t(5)-t(0)\\\\(\frac{1}{45}*\frac{2}{3}*t^{\frac{3}{2} })/t(5)-t(0)=(\frac{2}{135}*t^{\frac{3}{2}})/t(5)-t(0)\\\\(\frac{2}{135}*t^{\frac{3}{2}})/t(5)-t(0)=(\frac{2}{135}*5^{\frac{3}{2}})-(\frac{2}{135}*0^{\frac{3}{2}})\\\\(\frac{2}{135}*5^{\frac{3}{2}})-(\frac{2}{135}*0^{\frac{3}{2}})=\frac{2}{135}*11.18-0=0.1656=0.166[/tex]
Hence, we have that the amount dumped after 5 days is 0.166 tons.
Have a nice day!