Which of the following is a simpler form of the expression sin(0)sec(0)/cos(0)tan(0)

Answer:
[tex]\large\boxed{\sec\theta}[/tex]
Step-by-step explanation:
[tex]\dfrac{\sin\theta\sec\theta}{\cos\theta\tan\theta}\\\\\text{We know}\ \tan\theta=\dfrac{\sin\theta}{\cos\theta}.\ \text{Substitute:}\\\\=\dfrac{\sin\theta\sec\theta}{\cos\theta\cdot\frac{\sin\theta}{\cos\theta}}=\dfrac{\sin\theta\sec\theta}{\cos\theta}\cdot\dfrac{\cos\theta}{\sin\theta}\\\\\text{Cancel}\ \cos\theta\ \text{and}\ \sin\theta\\\\=\sec\theta[/tex]
The trigonometric function gives the ratio of different sides of a right-angle triangle. The correct option is A.
The trigonometric function gives the ratio of different sides of a right-angle triangle.
[tex]\rm Sin \theta=\dfrac{Perpendicular}{Hypotenuse}\\\\\\Cos \theta=\dfrac{Base}{Hypotenuse}\\\\\\Tan \theta=\dfrac{Perpendicular}{Base}\\\\\\Cosec \theta=\dfrac{Hypotenuse}{Perpendicular}\\\\\\Sec \theta=\dfrac{Hypotenuse}{Base}\\\\\\Cot \theta=\dfrac{Base}{Perpendicular}\\\\\\[/tex]
where perpendicular is the side of the triangle which is opposite to the angle, and the hypotenuse is the longest side of the triangle which is opposite to the 90° angle.
The given expression can be simplified as shown below,
[tex]\dfrac{\sin(\theta) \cdot \sec(\theta)}{\cos(\theta) \cdot \tan(\theta)}\\\\[/tex]
The ratio of sine and cosine is equal to tangent, therefore,
[tex]=\dfrac{\tan(\theta) \cdot \sec(\theta)}{ \tan(\theta)}\\\\[/tex]
= sec(θ)
Learn more about Trigonometric functions:
https://brainly.com/question/6904750
#SPJ2