The height and diameter of a cylindrical cup are the same length. The volume of the cup is 54pi in3 what is the radius and the height of the cup

Respuesta :

Answer:

The radius of the cup is [tex]3\ in[/tex] and

the height of the cup is [tex]6\ in[/tex]

Step-by-step explanation:

we know that

The volume of the cylinder is equal to

[tex]V=\pi r^{2}h[/tex]

Let

x-----> the height and the diameter of the cylinder

we have

[tex]V=54\pi\ in^{3}[/tex]

[tex]h=x\ in[/tex]

[tex]D=x\ in[/tex]

[tex]r=(x/2)\ in[/tex]

substitute the values

[tex]54\pi=\pi (x/2)^{2}(x)[/tex]

simplify

[tex]54=(x/2)^{2}(x)[/tex]

[tex]54=\frac{x^{3}}{4} \\ \\x^{3}=216\\ \\x=6\ in[/tex]

therefore

The radius of the cup is

[tex]r=(6/2)=3\ in[/tex]

The height of the cup is

[tex]h=6\ in[/tex]