Answer:
[tex]x=-2,y=3[/tex]
Step-by-step explanation:
The given system of equations is
[tex]2x+4y=8[/tex]
and
[tex]6x+3y=-3[/tex]
The augmented matrix is
[tex]\left[\begin{array}{ccc}2&4&|8\\6&3&|-3\end{array}\right][/tex]
[tex]\frac{1}{2}R_1\to R_1[/tex]
[tex]\left[\begin{array}{ccc}1&2&|4\\6&3&|-3\end{array}\right][/tex]
[tex]-6R_1+R_2\to R_2[/tex]
[tex]\left[\begin{array}{ccc}1&2&|4\\0&-9&|-27\end{array}\right][/tex]
[tex]-\frac{1}{9}R_2\to R_2[/tex]
[tex]\left[\begin{array}{ccc}1&2&|4\\0&1&|3\end{array}\right][/tex]
[tex]-2R_2+R_1\to R_1[/tex]
[tex]\left[\begin{array}{ccc}1&0&|-2\\0&1&|3\end{array}\right][/tex]
Hence [tex]x=-2,y=3[/tex]