Respuesta :

Answer:

Axis of symmetry: [tex]x=-\frac{5}{8}[/tex]

Vertex: [tex](-\frac{5}{8},-2\frac{9}{16})[/tex]

Step-by-step explanation:

The given quadratic equation is

[tex]y=4x^2+5x-1[/tex]

By comparing to the general quadratic function; [tex]y=ax^2+bx+c[/tex]

We have a=4,b=5,c=-1

The equation of the axis of symmetry is given by the formula;

[tex]x=-\frac{b}{2a}[/tex]

We got this formula by completing the square on the general quadratic function.

We substitute a=4 and b=5 to obtain;

[tex]x=-\frac{5}{2(4)}[/tex]

[tex]x=-\frac{5}{8}[/tex]
is the axis of symmetry.

To find the y-value of the vertex, we put [tex]x=-\frac{5}{8}[/tex] into the function to obtain;

[tex]y=4(-\frac{5}{8})^2+5(-\frac{5}{8})-1[/tex]

[tex]y=4(-\frac{5}{8})^2+5(-\frac{5}{8})-1[/tex]

[tex]y=-\frac{41}{16}[/tex]

The vertex of the given function is [tex](-\frac{5}{8},-2\frac{9}{16})[/tex]