Respuesta :

Answer:

2.433

Step-by-step explanation:

using

a+bi=r(cosP+isinP)

Let

-5 = [tex]r_{1}[/tex]cosФ

12 = [tex]r_{1}[/tex]sinФ

Taking square both on both sides

(-5)² + (12)² = [tex]r_{1}^2[/tex]cos²Ф +[tex]r_{1}^2[/tex]sin²Ф

we know that

sin²Ф + cos²Ф = 1

25 + 144 = [tex]r_{1}^2[/tex](1)

[tex]r_{1}[/tex] = √(144 + 25)

                      = 13

Similarly,

Let

-3 = [tex]r_{2}[/tex]cosФ

-3√3 = [tex]r_{2}[/tex]sinФ

taking square both on both sides

(-3)² + (-3√3)² = [tex]r_{2}^2[/tex]cos²Ф +[tex]r_{2}^2[/tex]sin²Ф

we know that

sin²Ф + cos²Ф = 1

9 + 27 = [tex]r_{2}^2[/tex](2)

[tex]r_{2}[/tex] = √(9 + 27)

                      = 6

Also

[tex]\frac{r_{1}sin\alpha }{r_{1}cos\alpha } = \frac{12}{-5}[/tex]

[tex]\alpha = r_{1}tan^{-1} (\frac{12}{-5} )[/tex]

And

[tex]\frac{r_{2}sin\alpha }{r_{2}cos\alpha } = \frac{-3\sqrt{3} }{3}\\[/tex]

[tex]\alpha = r_{2}tan^{-1} \frac{-3\sqrt{3} }{3}[/tex]

So

[tex]\frac{-5+12i}{3-3\sqrt{3i} }[/tex] = [tex]\frac{13tan^{-1}\frac{-12}{5}}{6tan^{-1}(-\sqrt{3})}[/tex]

= 2.433