Respuesta :

QUESTION 13.

The given vector has the initial point at [tex]P=(-6,1)[/tex]; and terminal point at [tex]Q=(4,-4)[/tex]

We want to write vector [tex]v[/tex] in the form: [tex]ai+bj[/tex].

Using position vectors, we have;

[tex]v=^{\rightarrow}_{OQ}-^{\rightarrow}_{OP}[/tex]

This implies that;

[tex]v=\binom{4}{-4}-\binom{-6}{1}[/tex]

[tex]v=\binom{4--6}{-4-1}[/tex]

[tex]v=\binom{10}{-5}[/tex]

We now write this in the required form;

[tex]v=10i-5j[/tex]

QUESTION 14

It was given that;

[tex]P=(-5,1)[/tex] and Q=(x,-14).

[tex]^{\to}_{PQ}=^{\to}_{OQ}-^{\to}_{OP}[/tex]

[tex]^{\to}_{PQ}=\binom{x}{-14}-\binom{-5}{1}[/tex]

[tex]^{\to}_{PQ}=\binom{x--5}{-14-1}[/tex]

[tex]^{\to}_{PQ}=\binom{x+5}{-15}[/tex]

If the length of this vector is 25, then we can solve the following equation for x.

[tex]\sqrt{(x+5)^2+(-15)^2} =25[/tex]

We square both sides to get;

[tex](x+5)^2+(-15)^2=25^2[/tex]

[tex](x+5)^2+225=625[/tex]

[tex](x+5)^2=625-225[/tex]

[tex](x+5)^2=400[/tex]

Take the square root of both sides to get;

[tex]x+5=\pm \sqrt{400}[/tex]

[tex]x+5=\pm20[/tex]

[tex]x=-5\pm20[/tex]

[tex]x=-25,x=15[/tex]

QUESTION 15

The given vector, has magnitude [tex]||v||=13[/tex] and makes an angle of [tex]\alpha=60\degree[/tex] with the positive x-axis.

The components of this vector is given by

[tex]v=\binom{x=||v|| \cos \alpha}{y= ||v|| \sin \alpha}[/tex]

[tex]v=\binom{13 \cos 60\degree}{13\sin 60\degree}[/tex]

[tex]v=\binom{\frac{13}{2}}{\frac{13\sqrt{3}}{2}}[/tex]

Hence the required form is;

[tex]v=\frac{13}{2}i+\frac{13\sqrt{3}}{2}j[/tex]

QUESTION 16.

The given vector, has magnitude [tex]||v||=5[/tex] and makes an angle of [tex]\alpha=45\degree[/tex] with the positive x-axis.

The components of this vector is given by

[tex]v=\binom{x=||v|| \cos \alpha}{y= ||v|| \sin \alpha}[/tex]

[tex]v=\binom{5 \cos 45\degree}{5\sin 45\degree}[/tex]

[tex]v=\binom{\frac{5\sqrt{2}}{2}}{\frac{13\sqrt{3}}{2}}[/tex]

Hence the required form is;

[tex]v=\frac{5\sqrt{2}}{2}i+\frac{5\sqrt{2}}{2}j[/tex]

QUESTION 17

The given vector, has magnitude [tex]||v||=3[/tex] and makes an angle of [tex]\alpha=270\degree[/tex] with the positive x-axis.

The components of this vector is given by

[tex]v=\binom{x=||v|| \cos \alpha}{y= ||v|| \sin \alpha}[/tex]

[tex]v=\binom{3 \cos 270\degree}{13\sin 270\degree}[/tex]

[tex]v=\binom{0}{-1}[/tex]

Hence the required form is;

[tex]v=0i-j[/tex]

QUESTION 18

The given vector is;

[tex]v=-i+\sqrt{3}j[/tex]

This vector is in the second quadrant, because the x-component is negative and the y-component is positive.

The direction angle is given by;

[tex]\tan(\alpha)=\frac{y}{x}[/tex]

[tex]\tan(\alpha)=\frac{\sqrt{3} }{-1}=-\sqrt{3}[/tex]

This implies that;

[tex]\alpha=120\degree[/tex]

The direction angle of the vector is 120 degrees.

QUESTION 19

The given vector is;

[tex]v=-i+3j[/tex]

This vector is in the second quadrant, because the x-component is negative and the y-component is positive.

The direction angle is given by;

[tex]\tan(\apha)=\frac{y}{x}[/tex]

[tex]\tan(\alpha)=\frac{3}{-1}=-3[/tex]

This implies that;

[tex]\alpha=108.4\degree[/tex]

The direction angle of the vector is 1O8.4 degrees to one decimal place.

QUESTION 20

We want to find the angle between the vectors,

[tex]v=8i+6j[/tex]

and

[tex]w=4i+9j[/tex]

The angle between the two vectors is given by;

[tex]\cos \theta=\frac{v\bullet w}{||v||\:||w||}[/tex]

[tex]\cos \theta=\frac{(8i+6j)\bullet (4i+9j)}{(\sqrt{8^2+6^2} )(\sqrt{4^2+9^2})}[/tex]

[tex]\cos \theta=\frac{(8\times4+6\times9)}{(\sqrt{64+36} )(\sqrt{16+81})}[/tex]

[tex]\cos \theta=\frac{32+54}{(\sqrt{64+36} )(16+81)}[/tex]

[tex]\cos \theta=\frac{86}{(\sqrt{100} )(\sqrt{97})}[/tex]

[tex]\cos \theta=0.8732[/tex]

[tex]\theta=\cos^{-1}(0.8732)[/tex]

[tex]\theta=29.2\degree[/tex]

The angle between the two vectors is 29.2 degrees to one decimal place.