Respuesta :

Answer:

[tex]\frac{x^{24} }{8y^{15}}[/tex]

Step-by-step explanation:

[tex](\frac{x^{3}y^{-2}}{2x^{-5}y^{3}})^3[/tex]

We will use

1)Product Rule

a^m ∙ a^n = a^(m + n),

this says that to multiply two exponents with the same base, you keep the base and add the powers.

2)Quotient Rule

[tex]\frac{a^{m} }{a^{n}}=a^{m-n}[/tex]

this says that to divide two exponents with the same base, you keep the base and subtract the powers.

So by considering these two laws

[tex](x^{3-(-5)}y^{-2-3}})/2 )^{3}[/tex]

[tex](\frac{x^{8}y^{-5} }{2})^{3}[/tex]

[tex](\frac{x^{8} }{2y^{5}})^{3}[/tex]

3)Power Rule (Powers to Powers)

(a^m)^n = a^(mn)

 [tex]\frac{x^{24} }{8y^{15}}[/tex]

Answer:

on e2020 i got the answer

C

  1x^8

(  ____  ) ^3

 2^2y^5