Respuesta :

Answer:

If it is [tex]p(x)=\frac{90}{(9+50e^{-x})}[/tex], then: [tex]p(3)=7.83[/tex]

If it is [tex]p(x)=\frac{90}{9}+50e^{-x}[/tex], then: [tex]p(3)=12.48[/tex]

Step-by-step explanation:

To solve this exercise you must substiute x=3 into the expression given in the problem.

1) If the expression is [tex]p(x)=\frac{90}{(9+50e^{-x})}[/tex], you obtain:

[tex]p(3)=\frac{90}{(9+50e^{-(3)})}[/tex]

[tex]p(3)=7.83[/tex]

2) If the expression is [tex]p(x)=\frac{90}{9}+50e^{-x}[/tex], you obtain:

[tex]p(3)=\frac{90}{9}+50e^{-(3)}\\p(3)=12.48[/tex]

Answer:

p (3) = 7.83

Step-by-step explanation:

We are given the following expression and we are to evaluate it given that the value of [tex] p = 3 [/tex]:

[tex] p ( x ) = \frac { 9 0 } { 9 + 5 0 e^ { - x } } [/tex]

Substituting the given value of [tex] p [/tex] to get:

[tex] p ( 3 ) = \frac { 9 0 } { 9 + 5 0 e^ { - 3 } } [/tex]

[tex] p ( 3 ) = \frac { 9 0 } { 11.489 } [/tex]

[tex] p ( 3 ) = 7.83 [/tex]