contestada

What is the height of the given pyramid if the volume is 48 cubic units? Question 3 options: 4 6 7 5

What is the height of the given pyramid if the volume is 48 cubic units Question 3 options 4 6 7 5 class=

Respuesta :

[tex]\bf \textit{volume of a pyramid}\\\\ V=\cfrac{1}{3}Bh~~ \begin{cases} B=area~of\\ \qquad its~base\\ h=height\\[-0.5em] \hrulefill\\ B=\stackrel{6\times 6}{36}\\ V=48 \end{cases}\implies 48=\cfrac{1}{3}(36)h\implies 48=12h \\\\\\ \cfrac{48}{12}=h\implies 4=h[/tex]

Answer:

Height of the pyramid is:

4 units

Step-by-step explanation:

Here we are given a right rectangular pyramid

Whose Volume is given by:

[tex]V=\dfrac{lwh}{3}[/tex]

where l and w is the length and width of its base and h is the height of the pyramid

Here, we are given l=b=6 units

We have to find h

[tex]V=\dfrac{6\times 6\times h}{3}\\ \\48=6\times 2\times h\\\\48=12\times h\\\\h=4[/tex]

Hence, height of the pyramid is:

4 units