Respuesta :

Answer:

62°

Step-by-step explanation:

consider the solution with short explanation (find it in the attachment).

Ver imagen evgeniylevi

Answer:

[tex]{\angle}BEC=62^{\circ}[/tex]

Step-by-step explanation:

Given:It is given that Chords AB and CD intersect each other at point E.

To find: The measure of ∠BEC.

Construction: Join AC.

Solution:

It is given that Chords AB and CD intersect each other at point E.

Now, we know that the inscribed angle is the half of the intercepted arc, thus

[tex]{\angle}ACD={\frac{1}{2}}(AD)[/tex]

[tex]{\angle}ACD={\frac{1}{2}}(54^{\circ})[/tex]

[tex]{\angle}ACD=27^{\circ}[/tex]

And, [tex]{\angle}CAB={\frac{1}{2}}(CB)[/tex]

[tex]{\angle}CAB={\frac{1}{2}}(70^{\circ})[/tex]

[tex]{\angle}CAB=35^{\circ}[/tex]

Now, in ΔAEC, we have

[tex]{\angle}CAE+{\angle}ACE+{\angle}AEC=180^{\circ}[/tex] (Angle sum property of triangles)

[tex]35+27+{\angle}AEC=180[/tex]

[tex]{\angle}AEC=118^{\circ}[/tex]

Also, using the straight line property, we have

[tex]{\angle}AEC+{\angle}CEB=180^{\circ}[/tex]

[tex]118+{\angle}CEB=180[/tex]

[tex]{\angle}CEB=62^{\circ}[/tex]

Therefore, the measure of [tex]{\angle}BEC[/tex] is [tex]62^{\circ}[/tex].

Ver imagen boffeemadrid