Respuesta :

Answer:

Final answer is B. [tex]y=\frac{3}{2}x+1[/tex]

Step-by-step explanation:

Given equation is [tex]y=-\frac{2}{3}x-4[/tex]

Now we need to find the equation of the line which is perpendicular to the given line  [tex]y=-\frac{2}{3}x-4[/tex]. from the given choices.

First let's find slope of the given line  [tex]y=-\frac{2}{3}x-4[/tex].

Compare given line with formula  [tex]y=mx+b[/tex]

We get  [tex]m=-\frac{2}{3}[/tex]

We know that slope of the perpendicular line is given by -1/m

Then slope of perpendicular line is [tex]-\frac{1}{m}=-\frac{1}{\left(-\frac{2}{3}\right)}=\frac{3}{2}[/tex]

so the choice which has slope [tex]m=\frac{3}{2}[/tex] will be the correct choice.

Hence final answer is B. [tex]y=\frac{3}{2}x+1[/tex]