Respuesta :

Answer:

x=17 is the final answer.

Step-by-step explanation:

Given that m ∠TSR = 84

SQ is angle bisector of ∠TSR

m ∠RSQ = 3x-9

Now using those information, we need to find the value of x.

Since SQ is angle bisector of ∠TSR, then we can write:

∠TSR =2 (∠RSQ)

[tex]84=2(3x-9)[/tex]

[tex]\frac{84}{2}=(3x-9)[/tex]

[tex]42=3x-9[/tex]

[tex]42+9=3x[/tex]

[tex]51=3x[/tex]

[tex]\frac{51}{3}=x[/tex]

[tex]17=x[/tex]

Hence x=17 is the final answer.

Answer:

The value of x = 17

Step-by-step explanation:

From the figure we get,

SQ bisects <TSR  means that

<TSQ = <RSQ = <TSR/2

<RSQ = 3x - 9

<TSR = 84°

To find the value of x

<RSQ = <TSR/2

3x - 9 = 84/2 = 42

3x = 42 + 9 = 51

x = 51/3 = 17

Therefore the value of x = 17