Respuesta :

Answer:

[tex]y = \frac{1}{3} x + \frac{8}{3}[/tex]

Step-by-step explanation:

The equation of the line I is  [tex]y = \frac{1}{3} x[/tex]

Scale factor = [tex]\frac{1}{2}[/tex], center = (0, 0)

To find the dilated line, we need follow the steps below:

Step 1: Draw the equation of the given line I

Step 2: Let's take a point from the line.

Let's take (2, 6) which is on the line I.

Let's find the dilated point by the scale factor  [tex]\frac{1}{2}[/tex]

Multiply the point (2, 6) by  [tex]\frac{1}{2}[/tex], we get

([tex]2.\frac{1}{2} , 6.\frac{1}{2} )[/tex] = (1, 3)

Step 3: Write the equation of the new line (Image I)

The dilated line has the same slope.

So slope (m) =  [tex]\frac{1}{3}[/tex]

x = 1 and y = 3

Now let's find the slope intercept.

y = mx + b

Plug in x = 1, y = 3 and slope (m) =  [tex]\frac{1}{3}[/tex]

3 =  [tex]\frac{1}{3}[/tex].1 + b

3 = [tex]\frac{1}{3}[/tex] + b

b = 3 - [tex]\frac{1}{3}[/tex]

b = [tex]\frac{3.3 -1}{3} = \frac{9 -1}{3} = \frac{8}{3}[/tex]

Now let's find the equation of the image I.

y = mx + b

[tex]y = \frac{1}{3} x + \frac{8}{3}[/tex]

The required equation is [tex]y = \frac{1}{3} x + \frac{8}{3}[/tex] after the dilation of scale factor.

Ver imagen ikarus