Respuesta :

Answer:

Equation of given circle :-  x² + y² = 4

Step-by-step explanation:

The equation of the circle with center (0, 0) and radius r is given by,

x² + y² = r²

It is given that, a  circle with center (0,0) and (-1,-3) a point on the circle

To find the radius of circle

radius r = √[(0 - - 1)² + (0 - -3)²] =√(1 + 3) =√4 = ±2

r = 2

To find the equation of circle

x² + y² = r²

x² + y² = 2²

x² + y² = 4

Answer:

[tex]\left(x\right)^2+\left(y\right)^2=10[/tex]

Step-by-step explanation:

Given that center of the circle is at (0,0) and it passes through a point (-1,-3).

Now we need to write the equation of the circle with given center and point on the circle.

So let's plug given values into standard formula of the circle

[tex]\left(x-h\right)^2+\left(y-k\right)^2=r^2[/tex]

there (h,k) gives center of the circle then h=0, k=0

So we get equation :

[tex]\left(x-0\right)^2+\left(y-0\right)^2=r^2[/tex]

[tex]\left(x\right)^2+\left(y\right)^2=r^2[/tex] ...(i)

plug the given point (-1,-3) that is x=-1 and y=-3 into (i)

[tex]\left(-1\right)^2+\left(-3\right)^2=r^2[/tex]

[tex]1+9=r^2[/tex]

[tex]10=r^2[/tex]

plug above value into (i)

[tex]\left(x\right)^2+\left(y\right)^2=10[/tex]

Hence final answer is [tex]\left(x\right)^2+\left(y\right)^2=10[/tex]