Answer:
y = 5
Step-by-step explanation:
Expand the logarithm:
[tex]\log_y{(5)}+\log_y{(y)}=2\\\\\dfrac{\log{(5)}}{\log{(y)}}+1=2 \quad\text{change of base formula}\\\\\dfrac{\log{(5)}}{\log{(y)}}=1 \quad\text{subtract 1}\\\\\log{(5)}=\log{(y)} \quad\text{multiply by log(y)}\\\\5=y \quad\text{take the anti-log}[/tex]
_____
You can also take the antilog first:
5y = y²
y(y -5) = 0 . . . . . subtract 5y, factor
y = 0 or 5 . . . . . y=0 is not a viable solution, so y=5.