secxcscx/cotx = sec^2x

Answer:
see explanation
Step-by-step explanation:
Using the trigonometric identities
• secx = [tex]\frac{1}{cosx}[/tex], cscx = [tex]\frac{1}{sinx}[/tex]
• cotx = [tex]\frac{cosx}{sinx}[/tex]
Consider the left side
[tex]\frac{sexcscx}{cotx}[/tex]
= [tex]\frac{1}{cosx}[/tex] × [tex]\frac{1}{sinx}[/tex] × [tex]\frac{sinx}{cosx}[/tex]
Cancel the sinx on numerator/ denominator
= [tex]\frac{1}{cos^2x}[/tex]
= sec²x = right side ⇒ verified