Respuesta :
Answer:
1) All integers where n ≥ 1
2) -1,023
Step-by-step explanation:
We are given a G.P. where
First term = [tex]a_1=1[/tex]
Common ratio = r = 6
nth term of G.P. = [tex]a_n=ar^{n-1}[/tex]
where a is the first term
So, Substitute n = 1
[tex]a_1=(1) 6^{1-1}[/tex]
[tex]a_1=1[/tex]
So, Domain for n = All integers where n ≥ 1
Now Find the sum of a finite geometric sequence from n = 1 to n = 5, using the expression [tex]-3(4)^{n-1}[/tex]
[tex]\sum^{n=5}_{n=1} -3(4)^{n-1}[/tex]
[tex] -3(4)^{1-1}+(-3(4)^{2-1})+(-3(4)^{3-1})+(-3(4)^{4-1})+(-3(4)^{5-1})[/tex]
[tex] -3-12-48-192-768[/tex]
[tex] -1023[/tex]