Question 23

Given the geometric sequence where a1 = 1 and the common ratio is 6, what is the domain for n?


A) All integers where n ≥ 1


B) All integers


C) All integers where n ≥ −1


D) All integers where n ≥ 0


Question 24

Find the sum of a finite geometric sequence from n = 1 to n = 5, using the expression −3(4)n − 1.


A) -1,023


B) 1,223


C) 1,023


D) −4,374

Respuesta :

Answer: 1) D  2). B

Step-by-step explanation:

Answer:

1)  All integers where n ≥ 1

2) -1,023

Step-by-step explanation:

We are given a G.P. where

First term = [tex]a_1=1[/tex]

Common ratio = r = 6

nth term of G.P. = [tex]a_n=ar^{n-1}[/tex]

where a is the first term

So, Substitute n = 1

[tex]a_1=(1) 6^{1-1}[/tex]

[tex]a_1=1[/tex]

So, Domain for n = All integers where n ≥ 1

Now Find the sum of a finite geometric sequence from n = 1 to n = 5, using the expression [tex]-3(4)^{n-1}[/tex]

[tex]\sum^{n=5}_{n=1} -3(4)^{n-1}[/tex]

[tex] -3(4)^{1-1}+(-3(4)^{2-1})+(-3(4)^{3-1})+(-3(4)^{4-1})+(-3(4)^{5-1})[/tex]

[tex] -3-12-48-192-768[/tex]

[tex] -1023[/tex]