( will give brainliest) 1. A cone has a slant height that is 3 times the radius. The Lateral Area of the cone is 12π square cm. What is the Surface Area of the Cone?

PLEASE ANSWER FAST

Respuesta :

Answer:

The surface area of the cone is [tex]16\pi\ cm^{2}[/tex]

Step-by-step explanation:

step 1

Find the radius

we know that

The lateral area of the cone is equal to

[tex]LA=\pi rl[/tex]

Let

x---------> the radius of the base of the cone

we have

[tex]LA=12\pi\ cm^{2}[/tex]

[tex]r=x\ cm[/tex]

[tex]l=3x\ cm[/tex]

substitute the values

[tex]12\pi=\pi (x)(3x)[/tex]

Simplify

[tex]3x^{2}=12\\x^{2}=4\\ x=2\ cm[/tex]

step 2

Find the surface area of the cone

The surface area of the cone is equal to

[tex]SA=LA+\pi r^{2}[/tex]

substitute the values

[tex]SA=12\pi+\pi (2)^{2}=16\pi\ cm^{2}[/tex]