Transform the given quadratic function into vertex form f(x) = quadratic function into vertex form f(x) = quadratic function into vertex form [tex]f(x) = (x-h)^{2} + k[/tex] by completing the square. [tex]a(x-h)^{2} +k[/tex] by completing the square.

[tex]f(x) = x^{2} +4x +8[/tex]

Respuesta :

Answer:

Vertex form [tex]f(x) =(x +2)^2 +4[/tex]

The vertex is [tex](-2,4)[/tex]

Step-by-step explanation:

For a general quadratic function the form is:

[tex]ax ^ 2 + bx + c[/tex]

For the function

[tex]f(x) = x ^ 2+ 4x +8[/tex]

The values of the coefficients for the function are the following: [tex]a = 1[/tex], [tex]b =4[/tex], [tex]c = 8[/tex]

Take the value of b and divide it by 2. Then, the result obtained squares it.

[tex]\frac{b}{2}= \frac{4}{2}[/tex]

[tex](\frac{b}{2})^2=(2)^2=4[/tex]

Add and subtract 4

[tex]f(x) = (x ^ 2 +4x +4) + 8- 4[/tex]

Write the expression of the form

[tex]f(x) = (x+\frac{b}{2})^2 +k[/tex]

[tex]f(x) =(x +2)^2 +4[/tex]

The vertex is [tex](-2,4)[/tex]