Transform the given quadratic function into vertex form f(x) = quadratic function into vertex form f(x) = quadratic function into vertex form [tex]f(x) = (x-h)^{2} + k[/tex] by completing the square. [tex]a(x-h)^{2} +k[/tex] by completing the square.

[tex]f(x) = 3x^{2} -4x-6[/tex]

Respuesta :

Answer:

[tex]f(x) = 3(x -\frac{2}{3})^2 -\frac{22}{3}[/tex]

The vertex is [tex](\frac{2}{3}, -\frac{22}{3})[/tex]

Step-by-step explanation:

For a general quadratic function the form is:

[tex]ax ^ 2 + bx + c[/tex]

For the function

[tex]f(x) = 3x ^ 2 -4x -6[/tex]

Take common factor 3.

[tex]f(x) = 3(x ^ 2 -\frac{4}{3}x - 2)[/tex]

The values of the coefficients for the function within the parenthesis are the following: [tex]a = 1[/tex], [tex]b = -\frac{4}{3}[/tex], [tex]c = -2[/tex]

Take the value of b and divide it by 2. Then, the result obtained squares it.

[tex]\frac{b}{2}= -\frac{2}{3}[/tex]

[tex](\frac{b}{2})^2=\frac{4}{9}[/tex]

Add and subtract [tex]\frac{4}{9}[/tex]

[tex]f(x) = 3([x ^ 2 -\frac{4}{3}x +\frac{4}{9}]- 2-\frac{4}{9})[/tex]

Write the expression of the form

[tex]f(x) = (x-\frac{b}{2})^2 +k[/tex]

[tex]f(x) = 3(x -\frac{2}{3})^2 -\frac{22}{3}[/tex]

The vertex is [tex](\frac{2}{3}, -\frac{22}{3})[/tex]