ANSWER
Center; (-4,3)
Radius: r=3
EXPLANATION
The given circle has equation;
[tex]x^{2} + y^{2} +8x - 6y +16 = 0[/tex]
Rewrite to obtain;
[tex]x^{2} + y^{2} +8x - 6y = -16[/tex]
Regroup to obtain;
[tex]x^{2} +8x + y^{2}- 6y = -16[/tex]
Add the square of half the coefficient of the linear terms to both sides of the equation,
[tex]x^{2} +8x + (4)^{2} + y^{2}- 6y + {( - 3)}^{2} = -16+ (4)^{2} + {( - 3)}^{2} [/tex]
[tex](x + 4)^{2} + {(y - 3)}^{2} = -16+ 16 + 9[/tex]
This simplifies to;
[tex](x + 4)^{2} + {(y - 3)}^{2} = {3}^{2} [/tex]
By comparison;
[tex](-4,3)=(h,k)[/tex]
and the radius is
[tex]r = 3[/tex]