Using the method of completing the square, put each circle into the form
[tex](x-h)^{2} + (y-k)^{2} = r^{2}[/tex]
Then determine the center and radius of each circle

[tex]4x^{2} -4x + 4y^{2} - 59 = 0[/tex]

Respuesta :

Answer:

Standard form: [tex](x-\frac{1}{2})^2 + (y-0)^2 = 15[/tex]

Center: [tex](\frac{1}{2}, 0)[/tex]

Radius: [tex]r =\sqrt{15}[/tex]

Step-by-step explanation:

The equation of a circle in the standard form is

[tex](x-h)^{2} + (y-k)^{2} = r^{2}[/tex]

Where the point (h, k) is the center of the circle

To transform this equation [tex]4x^{2} -4x + 4y^{2} - 59 = 0[/tex] this equation  in the standard form we use the method of square.

First, we group similar variables

[tex](4x^{2} -4x) + (4y^{2}) - 59 = 0[/tex]

Divide both sides of equality by 4

[tex](x^{2} -x) + (y^{2}) - 14.75 = 0[/tex]

Now we complete square for variable x.

Take the coefficient "b" that accompanies the variable x and divide by 2. Then, elevate the result to the square:

[tex]b =-1\\\\\frac{b}{2}= \frac{-1}{2}= -\frac{1}{2}\\\\(\frac{b}{2})^2=  (-\frac{1}{2})^2 = \frac{1}{4}[/tex]

Now add [tex](\frac{b}{2})^2[/tex] on both sides of the equality

[tex](x^{2} -x +\frac{1}{4}) + (y^{2}) - 14.75 = (\frac{1}{4})[/tex]

Factor the expression and simplify the independent terms

[tex](x-\frac{1}{2})^2 + (y^{2}) = 15[/tex]

[tex](x-\frac{1}{2})^2 + (y-0)^2 = 15[/tex]

Then

[tex]h =\frac{1}{2}\\\\k=0[/tex]

and the center is [tex](\frac{1}{2}, 0)[/tex]

radius [tex]r =\sqrt{15}[/tex]