Respuesta :

gmany

Answer:

[tex]\large\boxed{y=2(x+3)^2-6}[/tex]

Step-by-step explanation:

The vertex form of a parabola f(x) = ax² + bx + c:

[tex]y=a(x-h)^2+k[/tex]

(h, k) - vertex

[tex]h=\dfrac{-b}{2a}\\\\k=f(h)[/tex]

We have the equation:

[tex]y=2x^2+12x+14\\\\a=2,\ b=12,\ c=14\\\\h=\dfrac{-12}{2(2)}=\dfrac{-12}{4}=-3\\\\k=f(-3)=2(-3)^2+12(-3)+12=2(9)-36+12=18-36+12=-6[/tex]

Finally:

[tex]y=2(x-(-3))^2+(-6)=2(x+3)^2-6[/tex]