Respuesta :

Answer:

[tex]x\geq0[/tex]   if   [tex]f(x)=\sqrt{x}-3[/tex]

[tex]x\geq3[/tex]   if   [tex]f(x)=\sqrt{x-3}[/tex]

Step-by-step explanation:

If  [tex]f(x)=\sqrt{x}-3[/tex] then the domain of f(x) is all positive real numbers. This is [tex]x\geq0[/tex]

On the other hand the domain of g(x) would be all real numbers because it is a polynomial function

Therefore

[tex](f*g)(x) = f(x)*g(x)\\\\(f*g)(x) =(\sqrt{x}-3)*(1-x^2)[/tex]

[tex](f*g)(x) =\sqrt{x}-x^2(\sqrt{x})-3+3x^2[/tex]

Then the domain of [tex]f(x) *g(x)[/tex] will be the same domain of [tex]f(x)[/tex]

All positive real numbers,  [tex]x\geq0[/tex] or x ∈ [0, ∞)

-----------------------------------------------------------------------------------------------

If f(x) = [tex]\sqrt{x-3}[/tex] then the domain of f(x) is

[tex]x-3\geq0\\\\x\geq3[/tex]

Therefore

[tex](f*g)(x) = f(x)*g(x)\\\\(f*g)(x) =(\sqrt{x-3})*(1-x^2)[/tex]

[tex](f*g)(x) =\sqrt{x-3}-x^2(\sqrt{x-3})[/tex]

Then the domain of [tex]f(x) *g(x)[/tex] will be the same domain of [tex]f(x)[/tex]

[tex]x\geq3[/tex] or x ∈ [3, ∞)

Answer:

The domain of f, and thus the range of g, is restricted to values greater than or equal to 3.

If 1 minus x squared is greater than or equal to 3, then x squared must be less than –2.

Since x squared cannot be less than a negative number, the function is undefined for all values of x.

Step-by-step explanation: