Respuesta :

(f-g)(x) = x^2 + 7

(f-g)(x) = f(x) - g(x)

2x^2 - x^2 - 2 = x^2 + 7

The value of (f-g)(x) is [tex]x^2+7[/tex]. This is obtained by using operations on function(subtraction operation).

What are the operations on function on functions?

Consider two functions f(x) and g(x)

Then,

Addition: (f+g)(x) = f(x)+g(x)

Subtraction: (f-g)(x) = f(x)-g(x)

Multiplication: (f×g)(x)=f(x) × g(x)

Division:(f/g)(x) = f(x)/g(x)

Calculating the given functions:

The given functions are f(x) = [tex]2x^2+5[/tex] and g(x)= [tex]x^2 -2[/tex]

Thus, from the operations on functions we know that,

(f-g)(x) = f(x) - g(x)

So,

(f-g)(x) = [tex](2x^2+5) - (x^2 -2)[/tex]

          = [tex]2x^2+5 - x^2 + 2[/tex]

          = [tex]x^2 + 7[/tex]

Therefore, for the functions f(x) = [tex]2x^2+5[/tex] and g(x)= [tex]x^2 -2[/tex], the value of  (f-g)(x) is [tex]x^2+7[/tex].

Learn more about operations on functions here:

https://brainly.com/question/956872

#SPJ2