What is the solution set to the inequality (4x-3)(2x-1) greater than or equal to 0?

ANSWER
[tex]x \leqslant \frac{1}{2} \: or \: x \geqslant \frac{3}{4} [/tex]
EXPLANATION
The given inequality is:
[tex](4x - 3)(2x - 1) \geqslant 0[/tex]
We solve the corresponding quadratic equation to obtain,
[tex](4x - 3)(2x - 1) = 0[/tex]
This implies that;
[tex]x = \frac{3}{4} \: or \: x = \frac{1}{2} [/tex]
We use the number line to solve the inequality as shown in the attachment.
[tex]x \leqslant \frac{1}{2} \: or \: x \geqslant \frac{3}{4} [/tex]
The solution set of the inequality is (c) [tex]x \le \frac 12[/tex] or [tex]x \ge \frac 34[/tex]
The inequality is given as:
[tex](4x-3)(2x-1) \ge 0[/tex]
Split the above inequality
[tex](4x-3) \ge 0[/tex] or [tex](2x-1) \ge 0[/tex]
Remove the bracket
[tex]4x-3 \ge 0[/tex] or [tex]2x-1 \ge 0[/tex]
Rewrite as:
[tex]4x \ge 3[/tex] or [tex]2x \ge 1[/tex]
Solve for x
[tex]x \ge \frac 34[/tex] or [tex]x \ge \frac 12[/tex]
Rewrite as:
[tex]x \le \frac 12[/tex] or [tex]x \ge \frac 34[/tex]
Hence, the solution set of the inequality is (c) [tex]x \le \frac 12[/tex] or [tex]x \ge \frac 34[/tex]
Read more about inequalities at:
https://brainly.com/question/11234618